The Social Shaping of Technological Revolutions
Second Machine Age
Second Machine Age or Fifth Technological Revolution? (Part 3). The current moment: beginning of a new machine age and/or the turning point of the fifth great surge?
Second Machine Age of Fifth Technological Revolution? Different interpretations lead to different recommendations – reflections on Erik Brynjolfsson and Andrew McAfee’s book The Second Machine Age (2014)
Part Three – The current moment: beginning of a new machine age and/or the turning point of the fifth great surge?
This is the third instalment in a series of posts (and Working Paper in progress) that reflect on aspects of Erik Brynjolfsson and Andrew McAfee’s influential book, The Second Machine Age (2014), in order to examine how different historical understandings of technological revolutions can influence policy recommendations in the present. The previous post discussed various criteria used for identifying a technological revolution, why we undertake such an exercise in periodisations, and the key lessons to be gleaned from observing the regularities in the diffusion of technological change. This installment introduces the different implications that stem from applying either the ‘machine ages’ or my ‘great surges’ point of view to the interpretation of the present moment. Once this is understood, we can then propose what we see as the virtues and limits of Brynjolfsson and McAfee’s policy proposals, and why implementing policies appropriate to the stage of development of any technological revolution has been crucial to unleashing ‘Golden Ages’ in the past.
The current moment: the beginning of a new machine age and/or the turning point of the fifth great surge?
Having argued in the previous post in favour of an interpretation of technological revolutions that would count the current ICT transformation as the fifth surge since the first industrial revolution, I can nevertheless recognize that there are grounds for seeing it as the beginning of a ‘second machine age’. The essential break that Brynjolfsson and McAfee rightly register is that until now the leaps in productivity which accompanied each surge were related to the replacement of muscle power with machines; the impact of our current set of new technologies is from the replacement of brain power.
In that sense, these two theoretical frameworks are not incongruent; it is potentially fruitful to acknowledge that the first four technological revolutions and great surges of development that my work identifies occurred within what Brynjolfsson and McAfee have called the first ‘machine age’, and that the ICT revolution may prove to be the first of a second set. However, whether this break does indicate a second ‘age’ purely related to the replacement of brain power, remains to be seen; the next revolutionary technological shift may be driven by biotech, nanotech or some still unidentified combination which relates to the replacement or enhancement of some other previously immutable element of human existence. It is difficult to tell, from this relatively early vantage point, how significant this particular break will be in the long term.
The key questions that I wish to discuss here, however, are whether one can claim, as I do, that even if this particular technological revolution does signal the beginning of a new ‘age’, its process of assimilation to date has followed the same overall pattern as the four preceding ones; and, that being so, whether the notion of such long ‘ages’ ―the first being over two centuries in length― is helpful in attempt to learn from history or risks valuable lessons from the past being overlooked.
New unique technologies and social pioneers or dinosaurs
My contention is that each of the five surges of development to date, being the process of assimilation and deployment of each technological revolution detailed in the previous post, has both common and unique features in relation to the others. The uniqueness comes mainly from the nature of the technologies and of the specific historical context; the commonality, from the more predictable nature of human behaviour and of social change processes in the context of capitalism. What my research has led me to understand is that the recurring sequence is caused by this commonality, not by anything intrinsic to the technologies. Indeed, this is why I argue that it is possible to predict and set a policy course for what is still unknowable – and why, in order to do so, we must avoid reliance on the recent past and instead search for lessons (good and bad) from the study of social processes occurring at the same point in the diffusion of the surge as the present one.
I will not repeat here my entire argument regarding the role of social processes in diffusion: the frenzy of creative destruction, the role of ‘lifestyle’ shifts, the patterns of protest and conciliation, although we shall return to the topic when discussing how to identify and design viable policy recommendations.
But in questioning whether the current moment is indeed ‘an inflection point’, as Brynjolfsson and McAfee suggest, marking the start of a second machine age, it is important to elaborate on what occurs during the overlap as one technological revolution reaches maturity and another begins to irrupt. A crucial aspect of human behaviour affecting the propagation of new technologies is the strength of habits formed after a period of success with existing practices. When the primary industries of a particular technological revolution face maturity and market saturation, even though they are no longer able to innovate incrementally to increase productivity or to introduce new products, the established management, successful until then, is not prepared for a major change in behaviour. Thus, in the 1970s, as the mass production paradigm began to level off in the West in terms of innovation possibilities and productivity increases and, consequentially, of profitability, industry leaders and policymakers acted as one would expect: they looked for shortcuts such as acquisitions, leads and lags in international payments, and moved production to developing countries with lower labour or other costs, rather than leap into the unknown with the radical new technologies of the ICT revolution. The gradual diffusion of computers required deep organizational and technical changes; but having successfully applied their accumulated experience with mass production and hierarchical pyramid structures, the incumbents were unwilling to profoundly change their leadership style, to embrace new technologies and build open networks.
These incumbents are embodied by the term ‘dinosaurs’, acting towards the microprocessor as railway magnates responded to the ‘impracticality’ of automobiles, and as canal engineers tended to respond to the railways; unlike the digital natives, they fail to see that ‘this changes everything’. It is at this point, during the crossover, where the disruptors come in and where finance, which is not tied to any particular technology or product, can shift to the new without great effort, facilitating the installation period of each surge (see previous post). It is in the nature of capitalism to have a functional separation between financial and production capital which allows such major changes to occur. This marks a major dynamic difference between capitalism and a system such as the Soviet top-down planning, for instance, which despite having access to computers and microprocessors was completely unable to lead the corresponding transition – its institutional framework did not contemplate a mechanism for dealing with or enabling major disruptions. When the leaders of the Prague Spring in 1968 tried to set up such mechanism, they were violently crushed. The movement wanted the intelligentsia to replace the bureaucrats, precisely because they were acutely aware of the deep shift implied by the advent of computers.[1]
What type of a transition are we in?
Brynjolfsson and McAfee locate the start of the second machine age in the present moment, thus overlooking the recurring pattern. Rather than seeing an information age beginning in the 1970s with the widespread application of the microprocessor, the spread of computers, and the advent of the internet, as I would, they take the start of their new machine age from an advanced stage of these technologies: i.e. with robotics and artificial intelligence.
“We’ll show why and how the full force of these technologies has recently been achieved and give examples of its power. ‘Full,’ though, doesn’t mean ‘mature.’ Computers are going to continue to improve and to do new and unprecedented things. By ‘full force,’ we mean simply that the key building blocks are already in place for digital technologies to be as important and transformational to society and the economy as the steam engine. In short, we’re at an inflection point—a point where the curve starts to bend a lot—because of computers. We are entering a second machine age.” Brynjolfsson and McAfee Ch.1 p.9 (our emphasis).